You know, for a mathematician, he did not have enough imagination. But he has become a poet and now he is fine.

Name and section: \qquad

1. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ be the linear transformation $T(p(t))=p(t+1)-p(t)$.
(a) (1 point) $B=\left\{1, t, t^{2}\right\}$ is a basis of \mathbb{P}_{2}. Find the matrix ${ }_{B}[T]_{B}$.
(b) (2 points) $C=\left\{1, t, \frac{t(t-1)}{2}\right\}$ is another basis of \mathbb{P}_{2}. Find the matrix ${ }_{C}[T]_{C}$.
(c) (2 points) Find the eigenvalues of T. Is T diagonalizable?
2. Below all matrices are $n \times n$ with real entries unless otherwise specified. Label the following statements as true or false. (You do not need to justify your answers.)
(a) (1 point) If A and B have the same characteristic polynomial, then they are similar.
(b) (1 point) If A and B are similar, then they have the same eigenvectors.
(c) (1 point) If $A=P^{-1} D P$ where D is diagonal, then the columns of P are eigenvectors of A.
(d) (1 point) If a 2×2 real matrix A has complex eigenvalues $a \pm b i$, then $\operatorname{det}(A)=a^{2}+b^{2}$.
(e) (1 point) It is possible for a 4×4 matrix to have no real eigenvalues.
